The Candide System for Machine Translation
نویسندگان
چکیده
We present an overview of Candide, a system for automatic translat ion of French text to English text. Candide uses methods of information theory and statistics to develop a probabili ty model of the translation process. This model, which is made to accord as closely as possible with a large body of French and English sentence pairs, is then used to generate English translations of previously unseen French sentences. This paper provides a tutorial in these methods, discussions of the training and operation of the system, and a summary of test results. 1. I n t r o d u c t i o n Candide is an experimental computer program, now in its fifth year of development at IBM, for translation of French text to Enghsh text. Our goal is to perform fuRy-automatic, high-quality text totext translation. However, because we are still far from achieving this goal, the program can be used in both fully-automatic and translator 's-assistant modes. Our approach is founded upon the statistical analysis of language. Our chief tools axe the source-channel model of communication, parametric probabili ty models of language and translation, and an assortment of numerical algorithms for training such models from examples. This paper presents elementary expositions of each of these ideas, and explains how they have been assembled to produce Caadide. In Section 2 we introduce the necessary ideas from information theory and statistics. The reader is assumed to know elementary probabili ty theory at the level of [1]. In Sections 3 and 4 we discuss our language and translation models. In Section 5 we describe the operation of Candide as it translates a French document. In Section 6 we present results of our internal evaluations and the AB.PA Machine Translation Project evaluations. Section 7 is a summary and conclusion. 2 . Stat is t ical Trans la t ion Consider the problem of translating French text to English text. Given a French sentence f , we imagine that it was originally rendered as an equivalent Enghsh sentence e. To obtain the French, the Enghsh was t ransmit ted over a noisy communication channel, which has the curious property that English sentences sent into it emerge as their French translations. The central assumption of Candide's design is that the characteristics of this channel can be determined experimentally, and expressed mathematically. *Current address: Renaissance Technologies, Stony Brook, NY ~ English-to-French I f e Channel " _[ French-to-English -] Decoder 6 Figure 1: The Source-Channel Formalism of Translation. Here f is the French text to be translated, e is the putat ive original English rendering, and 6 is the English translation. This formalism can be exploited to yield French-to-English translations as follows. Let us write P r (e I f ) for the probability that e was the original English rendering of the French f. Given a French sentence f, the problem of automatic translation reduces to finding the English sentence tha t maximizes P.r(e I f) . That is, we seek 6 = argmsx e Pr (e I f) . By virtue of Bayes' Theorem, we have = argmax Pr(e If ) = argmax Pr(f I e)Pr(e) (1) e e The term P r ( f l e ) models the probabili ty that f emerges from the channel when e is its input. We call this function the translation model; its domain is all pairs (f, e) of French and English word-strings. The term Pr (e ) models the a priori probability that e was supp led as the channel input. We call this function the language model. Each of these fac tors the translation model and the language model independent ly produces a score for a candidate English translat ion e. The translation model ensures that the words of e express the ideas of f, and the language model ensures that e is a grammatical sentence. Candide sehcts as its translat ion the e that maximizes their product. This discussion begs two impor tant questions. First , where do the models P r ( f [ e) and Pr (e ) come from? Second, even if we can get our hands on them, how can we search the set of all English strings to find 6? These questions are addressed in the next two sections. 2.1. P robab i l i ty Models We begin with a brief detour into probabili ty theory. A probability model is a mathematical formula that purports to express the chance of some observation. A parametric model is a probability model with adjustable parameters, which can be changed to make the model bet ter match some body of data. Let us write c for a body of da ta to be modeled, and 0 for a vector of parameters. The quanti ty Prs (c ) , computed according to some formula involving c and 0, is called the hkelihood 157 [Human Language Technology, Plainsboro, 1994]
منابع مشابه
Candide: A Statistical Machine Translation System
The Candide project has two objectives. First, we want to develop a fully-automatic, large vocabulary, French-to-English translation system. Second, we want to develop an interactive translator 's workstation that will increase the speed and productivity of a human translator. The philosophy of the project is to combine, within a probabilistic framework, both statistical information acquired au...
متن کاملA Hybrid Machine Translation System Based on a Monotone Decoder
In this paper, a hybrid Machine Translation (MT) system is proposed by combining the result of a rule-based machine translation (RBMT) system with a statistical approach. The RBMT uses a set of linguistic rules for translation, which leads to better translation results in terms of word ordering and syntactic structure. On the other hand, SMT works better in lexical choice. Therefore, in our sys...
متن کاملبهبود و توسعه یک سیستم مترجمیار انگلیسی به فارسی
In recent years, significant improvements have been achieved in statistical machine translation (SMT), but still even the best machine translation technology is far from replacing or even competing with human translators. Another way to increase the productivity of the translation process is computer-assisted translation (CAT) system. In a CAT system, the human translator begins to type the tra...
متن کاملOn the Translation Quality of Google Translate: With a Concentration on Adjectives
Translation, whose first traces date back at least to 3000 BC (Newmark, 1988), has always been considered time-consuming and labor-consuming. In view of this, experts have made numerous efforts to develop some mechanical systems which can reduce part of this time and labor. The advancement of computers in the second half of the twentieth century paved the ground for the invention of machine tra...
متن کاملToward a Scoring Function for Quality-Driven Machine Translation
We describe how we constructed an automatic scoring function for machine translation quality; this function makes use of arbitrarily many pieces of natural language processing software that has been designed to process English language text. By machine-learning values of fnnctions available inside the software and by constructing functions that yield values based upon the software output, we ar...
متن کامل